
Dataflow Processing Engine
Based on Data Distribution

Service

Svetlana Shasharina and Nanbor Wang
Tech-X Corporation

{sveta,nanbor}@txcorp.com
Feb 13, 2012

Outline

•  Background
•  Common features of scientific workflows
•  Expressing workflows
•  DDSFlow workflow engine: design, status and

future steps
•  Support for Python in DDS

Background

•  Collaboration with FNAL on dataflow processing and
monitoring for workflows (originally for JDEM and LQCD).
FNAL drove the requirements and are shaping the
workflow language
–  Erik Gottschalk
–  Jim Kowalkowski
–  Marc Paterno

•  Work is funded by Phase II SBIR from HEP/DOE
•  Goals:

–  Identify key requirements of targeted workflows
–  Find ways to express them
–  Leverage Data Distribution Service for implementation
–  Develop a working system

Definitions

•  Actor : a minimal component a workflow (executable taking
some input and producing output). Other names:
participant and module

•  Composite actor: several actors connected via workflow
control patterns, that mimics actors

•  Workflow: Composition can be specified using the patterns
or some other language (for example, a functional
language) or graphical representation (a la Kepler). In and
outs should be matched. Technically: a composite actor

•  Dataflow is a data-driven workflow
•  Job is associated with some input data (explicitly specified)

and a particular workflow

Task A
30s

Task C
110s

Task D
250s

Task E
60s

Task F
2s

Task G
54s

Task H
244s

Task I
2s

...2...61...

Orig Input: 81 MB

Task B
30s

FinalSE Pipeline

File A: 81 MB

File B: 81 MB

File D: 81 MB

File E: 81 MB

Task A
30s

Task B
30s

File F: 81 MB File H: 2 MBAvg 3 File G:
each 70 MB

All numbers are estimates with some more accurate than others
Codes use less than 2G memory (Most less than 1G)

Extra calibration files not illustrated ~18G total
Misc smaller output files not illustrated

62 pieces almost independent trivially-parallel pipelines (exception task C)

File C: 29 MB

(Ingested into DB,
no output files)

Task D
250s

Task E
60s

Task F
2s

Task G
54s

Task H
244s

Task I
2s

File D: 81 MB

File E: 81 MB

File F: 81 MB File H: 2 MBAvg 3 File G:
each 70 MB

(Ingested into DB,
no output files)

...2...61...

Orig Input: 81 MB

File A: 81 MB

compress
each file ~3s

Files A-G

Compressed
Files A-G

End of Processing

DES workflow is an example of a data
processing workflow that we are looking at

Common features of scientific
workflows

•  Data driven execution coordination
–  Actions triggered by data availability
–  Capable to handle “stream of data”

•  Dynamic
–  Actual flow depends on the result of the previous step
–  Resources allocated as needed dynamically and flow is changed

depending on outcome and number of outputs
•  Automatic management of transient data

–  Without the need to explicitly specify locations and names
–  Selectively archived

•  Expression for workflow should be editable: text-based
–  GUI could be useful to set up a simple prototype or show the flow
–  GUIs do not work well in distributed environments)
–  Standard notations that are reusable but easy to use

Other requirements

•  Configurable resource allocation/task scheduling strategies
•  Tolerance for partial failures

–  Allow dataflow to continue when less than some % subset
of data cannot be processed

•  Recoverability from software/hardware failures (from a single
dataflow or a set of dataflows)

•  Provenance – tracking software packages/versions used in a
dataflow processing

•  Parameter managements (physics/algorithmic/execution
parameters)

There are many types of
workflows: how to limit?

•  Choosing particular control patterns
•  Particular syntax to express the workflow
•  Compatibility with existing applications
•  Target run-time

Dataflow execution can be defined using
common workflow patterns

http://www.workflowpatterns.com/patterns/control/

–  Sequence

–  And-split or parallel split (called map for identical threads)

–  And-merge or synchronization (called reduce for identical threads)

–  Or-split (exclusive)

–  Or-merge (exclusive)

–  Condition/loop

Functional language syntax for
describing dataflow

•  Functional language treat y = f�g as a function definition,
not assignment. Thus y is a functor (function that can be
treated as an object). Predefined methods (for example,
map) allow easy creating of composite actors. FLs allow
–  Unbounded stream instead of one argument so a

function gets applied to a list (x, followed by remainder)
–  Lazy evaluation: happens only when the elements are

available (a must if you are dealing with streams or in
dynamic flows when we do not know the number of
outcomes in a step)

•  DDSFlow
–  We adopt the syntax from functional languages for

describing dataflow processing

Dataflow processing definitions
in DDSFlow

Borrow from FLs, we maps functional definitions to dataflow
processing definitions
•  Each function defines an executable that take some input data

and produce some output data
y=F(x)
–  Input/output data are typed, we currently assume they are

files containing data of specific type in some format
–  In DDSFlow, we need to associate varuiys parameters with F

•  A sequence of functions: y=F(G(H(x))) can be written as:
y=FGH(x)

•  Map is a special function that hints at possible parallelization:
y[]=map(F, x[])

•  Split/fork merge/join will be inferred through temporarily variables

More functions under consideration
(FNAL suggestion)

•  Map applies a function to every element of a list:
map (f, [x0, x1, …, xN-1]) = [f (x0), …, f (xN-1)]
•  Reduce collapses a list into a single value by applying a binary operator *

cumulatively from left to right:
reduce (*, [x0, x1, x2, x3])=((x0*x1)*x2)*x3.
•  Scan accumulates all the intermediate results of reduce operation:
scan (*, [x0, x1, x2, …]) = [x0, x0*x1, x0*x1)*x2, …].
•  Filter selects elements of the list for which a function applied returns true:
filter (f, [x0, x1, …, xN-1])= [xi, …] for all i for which f (xi) = true.
•  Zip merges two lists into one with elements that are tuples from the

original lists:
zip [a,b,c...] [z,y,x...] = [(a,z), (b,y), (c,x)...]
•  Unzip takes a list of tuples, and breaks them apart into a tuple of lists
unzip [(a,b),(c,d)] = ([a,c], [b,d])
•  Cycle is the same as map but until some condition is true.

A common dataflow processing scenario
– parallel pipeline using map/reduce

…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…	

ss_split

…
…
…
…
…	

…
…
…
…
…	

…
…
…
…
…	

…
…
…
…
…	

…
…
…
…
…	

…
…
…
…
…	

ss_gen

ss_gen

ss_gen

ss_combine

…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…	

map

is: spectrum: int[]
spectra: spectrum[] images: image[]

os: image: int[]

os = ss_combine(map ss_gen (ss_split is))

How such a simple parallel map/
reduce dataflow look like

ss_split :: Spectrum -> [Spectrum]
ss_generate :: Spectrum -> Image
ss_combine :: [Image] -> Image
spectra = ss_split input_spectrum
images = map ss_generate spectra
result = ss_combine images
OR
my_workflow :: Spectrum -> Image
my_workflow is = ss_combine (map ss_generate (ss_split is))

Functional definitions to DDSFlow
execution entity mappings:

Simple actors
•  Internally, DDSFlow uses XML documents to describe dataflow
•  A simple function is mapped to an actor

–  Maps to an external
executable

–  Has predefined input/
output types

–  Can be associated with
a configuration file

–  Work as an insertion point
for provenance and Q/A

<actor>!
 <id>foo</id>!
 <exec>foo.sh</exec>!
 <inport>!
 <type>Type1</type>!
 </inport>!
 <outport>!
 <type>[Type2, Type3]</type>!
 </outport>!
 <config>foo.cfg</config>!
 </actor>!

Composite actors
•  Sequential actors

–  Represent a series of
actors into one actor

–  Can refer to other
composite actors

–  Define a sequential
firing rules

•  Map actors
–  Can refer to a

composite actor
–  Define a possible dynamic

parallel firing rules
–  Define a synch point at the end

<compositeActor>!
 <type> sequence </type>!
 <id> denoiser3 </id>!
 <actors> denoiser1, denoiser2 </actors>!
</compositeActor> !

<compositeActor>!
 <type>map</type>!
 <id>apply_filter</id>!
 <actor>filter_seq</actor> !
</compositeActor>!

Forming dataflow processing
definitions

•  Reduce is like a regular actor
–  Types must match

•  Yet to define
–  Split defines a firing

rule to trigger
concurrent actors to fire

–  Merge defines a synch point

•  Dataflow definition invokes a actor (usually a
composite one)
–  Types can be inferred from the actors

<dataflow> // Not sure about this?!
 <actorId> fullworkflow </actorId>!
 <indata> inputfilenames </indata>!
 <outdata> outputfilenames </outdata> !
</dataflow> !

Underlying assumptions

•  There are many working processes available for the
workflow

•  A process can be specialized (do just one type of action)
or not (agreeing to whatever should be done next)

•  Loose coupling: action triggered upon files generation
manifested by events

•  Detect failed nodes/processes
•  Elimination of a single point of failure calls for a

architecture with distributed dataflow processing
conductors

Pipeliner

DDSFlow provides runtime
environment to coordinate and

schedule actor executions

Ticket Manager

Job
ID

task
ID

seq
ID

status

Job
Initializer

Worker Worker Worker Worker

Job
Finalizer

ticket	

jobStatus	

Worker

Worker

workerStatus	

workTicket	

ticket	
 Idle Workers

jobStatus

Run Com-
pleted

Dispo
s-able

Details in dataflow processing

•  Internally, a task/ticket represents the execution of a simple actor
•  Incoming data trigger a dataflow (using pipeliner) to submit a job

representing the overall dataflow for the piece of data
•  A composite actor often is translated into a new job. The

composite actor will wait for the job to finish before firing the next
task(s)

•  Jobs are independent to one another when it comes to
scheduling (we may need more comprehensive scheduling
strategies later)

•  We do not cover stage-in/out of data so far
–  Perhaps can be done via actors?

Execution of sequential actors

Task0
Standby

Task0
Ready

Task0
Running

Task0
Completed

Initial
ticket
states

jobStatus,Run

Tuplespace
internal

scheduling

Task1
Standby

Task1
Ready

Task1
Running

Task1
Completed

taskStatus,Task0,Completed

Tuplespace
internal

scheduling

Taskn
Standby

Taskn
Ready

Taskn
Running

Taskn
Completed

taskStatus,Taskn-1,Completed

Tuplespace
internal

scheduling

Eventual
ticket

states Taks executed sequentially	

Sequences proceed independently in parallel 	

DDSFlow leverages
Data Distribution Service (DDS)

•  OMG standard for real time publish-subscribe systems
•  Free implementations are available and good
•  Rich quality-of-service features (resource and time aware,

time sequences): to get just want to you want, how much you
want and when you want

•  Works over WAN
•  Security support
•  C++ and Java binding (we are working on a Python binding)
•  Tested in DOD applications (military ships, air traffic control)
•  Topics – events with data (can be used to exchange data in

memory, we tried FITS data)

DDS decouples participants and
delivers information of interest

Key features in DDSFlow enabled
via DDS

–  Dynamic workflows
–  Pub/sub model enables us to form federations (many

clusters on LAN or WAN) easily
•  Other than the ability to pool more resources

–  In-memory data exchange (avoiding files)
–  Detect processes that have stopped working in a pre-

determined time (single node/worker failure)
–  Support for auto-snapshot of ticket states
–  More resilient to faults
–  Enable restart of interrupted dataflow processes (cluster/

framework failure)
–  Streamlined collection of provenance (through global

information space), QA, and system monitoring data vis
DDS topics

Leveraging various run-time
environments

•  Currently targeting a single cluster
–  Head-node runs the ticketing server
–  Worker nodes runs the worker daemon
–  Assuming executables are available for all workers

•  Can easily extend to support federation of clusters
–  Ticketing servers need to be aware of other server,

this can easily implemented with DDS
•  Grid environment?

–  Deploy our services using OSG/Teragrid software
stack

DDSFlow current status

•  Support execution of sequences and map/reduce’s
•  Support for dynamic map (variable number of parallel

elements)
•  Depending on an internal XML-based actor definitions

DDSFlow plan
•  Extend implementation to more control functions

and recursive maps (now all ~works for map-reduce
systems)

•  More support for configuration files
•  Better error and status information management
•  Support for provenance
•  Translate functional dataflow definitions into XML
•  Intervention based on data quality or other status

events
•  Demonstrate that we can implement given examples
•  Type verifications

PyDDS: bringing Python
programmers to DDS

•  Implement prototype Python mappings for DDS which
would allow Python applications to participate in DDS
data exchanges easily

•  Currently, no standardized DDS Python mapping
available and for developers to use DDS in their Python
applications

•  Allow Python developers to interact with DDS data
spaces directly
–  Eliminate the need to generate topic-specific Python

wrappers of C/C++ mapping codes

PyDDS wrappings

Domain Participant

Netwotk	

Subscriber Publisher

Writer Reader

TopicWriter TopicReader

pyDDS Services

Python Application

Typical development steps
using PyDDS

•  Import pydds in Python code
•  Dynamically generate topic specific DDS objects using

services provided by pydds in python
•  Interact with DDS subsystem directly thru pydds and the

generated topic-specific objects
•  Benefits:

–  No need to use tools outside of Python
–  No need to re-generate Python bridges when IDL

changes
–  Natural Python development flow

Example:
joining a data domain/partition

A one-stop interface into the pydds global factory methods
import pydds

We should allow users to define their dataspace/runtime and pass it in as

an argument to various operations that need it. (See later)

myDataspace = pydds.connect_dataspace(“Domain name”, “Partition name”)

Perhaps pydds can hold a default dataspace object. If some operations

that need to know a dataspace object but are not provided one, they will

fish out the default (nameless, partition less) dataspace and use it instead.

Likewise, a Dataspace object should contains some

default subscriber/publisher objects with default QoS policies.

Example:
manipulating QoS policy sets

myQoS = pydds.create_qos()
myQoS.set_reliable (3000000)

myQoS.set_transient()

myQoS.set_keep_last (3)

Example:
create topics, readers, writers

Creating/Finding a topic in the data space
Last argument specifies the URI of the topic structure

helloTopic = pydds.create_topic
 (“TopicName”,

 myDataspace,

 myQoS,

 “file://HelloWorld.idl#HelloTopic”)

Creating topic-specific reader/writer:

helloReader = helloTopic.create_reader (readerQoS)

helloWriter = helloTopic.create_writer (writerQoS)

Example:
writing and reading DDS samples

creating a sample
helloSampl = helloTopic.create_sample

 (message=”John Smith”, repeat=3)

publishing the sample

status = helloWriter (helloSample)

Simple read is straightforward

[samples, infos] = hellowReader.read()

sys.stdout.write(samples[0].topicFieldOfInterest…)

Will look at Twistd and/or Trellis to design the Listener

callback

Design and implementation status

•  Working with OpenSplice Community Edition version
5.4.1

•  Currently implementing the core OpenSplice
communication layer

•  We are creating a thin wrapper layer on top of the
OpenSplice C APIs
–  OpenSplice’s C++ classes are designed for their

topic-specific C++ mappings
•  Many are derived from other classes, have multiple layers of

inheritance and multiple inheritances
•  All the levels of inheritance need to be taken care of in the

bindings, and including all the classes, there are about 150
classes for which Python bindings are needed

–  Using Boost.Python to minimize dependencies to
external software

PyDDS next steps

•  Develop lightweight C++
wrapper class for
Boost.python

•  Develop pyDDS API -
Pything bridge for
OpenSplice
communication API in
pyDDS

•  Implement example
Python applications with
hand-crafted marshaling
and demarshaling

•  Define API for
dynamic code
generation of Python
mappings

•  Implement such tool

